
www.manaraa.com

JAMES S. COLLOFELLO
Department of Computer Science and Engineering
Arizona State University

CHI HENG NG
Department of Computer Science and Engineering
Arizona State University

ABSTRACT

Many computer science departments offer an introductory soft-
ware engineering course, which normally provides an introduction
to software engineering topics in conjunction with a semester long
team project. To ensure students acquire the correct lessons from
this project experience, it is essential that the teams utilize well-de-
fined software development processes similar to those practiced by
leading software development organizations. Since its inception,
the Software Engineering Institute Capability Maturity Model
(CMM) has served as a guide for organizations seeking to improve
their development practices, through a self-assessment question-
naire. In an effort to assess the maturity of development practices
utilized in software engineering courses, an “academic” version of
the CMM questionnaire was developed. This questionnaire was
distributed to a sample of software engineering instructors in an ef-
fort to assess the maturity of academic software engineering course
projects. The questionnaire and the survey results are presented
and discussed.

I. INTRODUCTION

Many universities/colleges across the country offer an introduc-
tory course in software engineering principles at either the under-
graduate or graduate level. These courses also usually offer an oppor-
tunity for students to work on a team project that typically lasts at
least a semester. Since instructors generally adopt their own develop-
ment approach for course projects, the resulting outcome of success
or failure varies widely and is often dependent on the experience of
the instructor. To increase the probability of successful projects, in-
structors should ensure that their recommended development
process for teams to follow is appropriate for the course project. This
development process should provide software engineering students
with exposure to mature practices comparable to those utilized in the

best software development organizations. A good model to follow
for assessing the development practices to be followed by the teams
is the Software Engineering Institute Capability Maturity Model
(CMM).

Since its introduction in 1987, CMM has become a de facto
standard for assessing and improving software processes. The over-
all goal is to help an organization identify the key practices to in-
crease the maturity of its software development process. The first
step toward improving an organization’s software development
process is to assess its software process maturity. This can be ac-
complished through the maturity questionnaire and the accompa-
nying techniques that map a process into one of five maturity levels.
The five levels of CMM are summarized as follows:1

Level-1: Initial. The software development process is often re-
ferred to as ad hoc or chaotic. Few processes are documented. The
software development environment is unstable, and sound manage-
ment practices are absent. Outcomes of the process are unpredictable
and success is highly dependent upon individual efforts or heroics.

Level-2: Repeatable. At this level, underlying software project
management policies and procedures are in place to track software
costs, schedule, and functionality. The software development envi-
ronment is stable and earlier success on projects with similar appli-
cations can be repeated.

Level-3: Defined. The software development process is docu-
mented, standardized, and integrated into a standard process for
the organization. Both engineering and management activities are
stable and repeatable. Foundation is now established for further
process improvement.

Level-4: Quantitatively Managed. Quantitative quality goals for
both software processes and products are set. An organization-wide
database of measurements is collected and analyzed to predict
trends in process and product quality. Software process and prod-
ucts are quantitatively understood, and statistically managed.

Level-5: Optimizing. The organization now emphasizes contin-
uous process improvement and defect prevention. It is capable of
identifying weaknesses and strengths in its software process by col-
lecting quantitative feedback from the existing process and from in-
novative ideas and technologies.

Each level of CMM, except the first one, is decomposed into
several key process areas (KPAs, 19 in total).2,3 Each KPA contains
issues and activities that must be addressed to achieve a maturity
level. A KPA is satisfied when most of the related activities are in
place. An organization is designated an overall maturity level once
all the corresponding KPAs are satisfied.

This study is an extension of prior published work.4 In the re-
mainder of this paper, we will describe our approach to assessing
the process maturity of software engineering project courses. This
approach is modeled after CMM and is tailored to the university
environment, as an attempt to assist instructors to improve their

January 2001 Journal of Engineering Education 75

Assessing the Process Maturity Utilized in
Software Engineering Team Project Courses*

*Based on “Assessing the Process Maturity Utilized in Software Engineering
Team Project Courses” by James S. Collofello and Chi Heng Ng, which appeared in
the Proceedings of the 1999 Frontiers in Education Conference, San Juan, Puerto
Rico, 10–14 November 1999, IEEE Catalog No. 99CH37011, pp. 12a9-5 through
12a9-9, © 1999 IEEE.

www.manaraa.com

courses. The software engineering course maturity question-
naire and its evaluation will be presented, followed by a descrip-
tion of the methodology of our survey and its results. The results
will identify the level of discipline followed on projects in soft-
ware engineering courses. The survey was not a rigorous scien-
tific study, but rather an inexpensive estimation of the maturity
level of software engineering courses.

II. SOFTWARE ENGINEERING COURSE
MATURITY LEVELS

Patterned after CMM, but in a simplified manner, the software
engineering course maturity levels provide a means to assess course
maturity levels. As with CMM, each level contains the same num-
ber of key process areas, customized for the academic environment.
The five levels are:

Level-1: Initial. The course does not apply or integrate software
engineering principles and practices into the project. Students are
taught software engineering principles but overall, guidelines to
adopting these principles are not defined. Project instructions given
to teams are unclear or vaguely documented. Team assignments are
often conducted on an ad hoc basis. Project outcome is largely un-
predictable; performance is dependent on group dynamics, and
personal abilities.

Level-2: Repeatable. Students are required to perform basic soft-
ware project planning and tracking activities. The instructor main-
tains a stable process to ensure that most of the student projects can
be successful. Based on the instructor’s informal framework, project
successes from past semesters can be repeated.

Level-3: Defined. Class projects are undertaken based on a defined,
documented, and standardized process. The instructor relies on an estab-
lished process that serves as a foundation for further process improve-
ment. Course practices can be consistently implemented, regardless of
the presence or absence of certain key instructors.

Level-4: Quantitatively Managed. The instructor maintains com-
prehensive process and project measurements. Course projects are
quantitatively measured using statistical methods. Measurements on
student projects are gathered and analyzed for further improvement.

Level-5: Optimizing. Emphasis is placed on continuous process
improvement and defect prevention. Weaknesses and strengths in
development process can be identified by obtaining quantitative
feedback from current software process practices, and from testing
innovative ideas and technologies. Changes are monitored closely,
and the process is refined on a continuous basis.

III. THE QUESTIONNAIRE AND ITS EVALUATION

To evaluate process maturity of software engineering courses,
a maturity questionnaire similar to the SEI questionnaire5 was de-
veloped. The software engineering course questionnaire8 was tai-
lored to the university environment. In designing the question-
naire, we borrowed the structure adopted in the SEI
questionnaire by categorizing the 55 questions into 4 sections and
19 subsections highlighted by their associated maturity levels and
KPAs, respectively. The objective was to enable a smooth transi-
tion from one section to the next and to ensure that the question-
naire was easy-to-follow. In addition to the four main sections, a

section contained 8 background questions designed to gather in-
formation about the respondent and course. This information
was evaluated but not considered in assigning the maturity level of
the course.

As a brief summary, Level-2 questions (16 questions) pertained
to activities for the Repeatable level; Level-3 questions (22 ques-
tions) concerned activities associated with the Defined level; Level-4
questions (9 questions) were designed to assess the Quantitatively
Managed level; and Level-5 questions (8 questions) dealt with re-
quirements for achieving the Optimizing level. With exception to
the background questions, all other questions required merely a ‘Yes’
or ‘No’ response. The questionnaire was designed to take approxi-
mately 10 minutes to complete.

The questionnaire was evaluated in two simple ways. First, we
compared the total number of “Yes” responses for each level to the
total number of questions allocated to that level and calculated the per-
centage. If the percentage reached 80%, the course was deemed to sat-
isfy the requirement of that particular level. In addition, a course had
to satisfy the requirement of all lower levels in order to be considered as
a candidate for a higher level. In other words, skipping levels was not
allowed in this evaluating scheme. Each level serves as a “prerequisite”
for the next level, and is a necessary foundation to achieving a higher
level. Alternatively, the calculated percentage for each level can also be
used to indicate the degree to which a course supports each level. This
scheme does not assign a level to a course; rather it provides respon-
dents with an overall understanding of where their course stands in
terms of the maturity levels.

IV. SURVEY METHODOLOGY

The survey was posted on the Web for a month, from mid-
February to mid-March 1999. The survey was designed to mini-
mize end-user overhead, making it convenient for potential re-
spondents to complete and submit. By combining HTML forms
and Perl script, the results were logged automatically. The survey
was designed to ensure that only one survey entry was submitted
per instructor. Although our design accepted partially completed
surveys, almost all surveys submitted were complete.

Survey responses were solicited via an online newsletter to soft-
ware engineering educators, as well as via direct e-mail invitation.
Most responses were the results of our e-mail invitations. E-mail
addresses were extracted from several sources. Some of the e-mail
addresses came from SEI’s published software engineering educa-
tion directories.6,7 In most cases, however, e-mail addresses were
extracted from instructors’ homepages using the readily available

76 Journal of Engineering Education January 2001

Table 1. Maturity profile of courses satisfying 80% of
requirements.

www.manaraa.com

Internet search engines. The e-mailed invitation in the form of a
cover letter was sent to each potential respondent inviting him/her
to participate in the survey. The invitation was individually ad-
dressed but sent out in bulk, and included the URL of the survey.
Approximately 150 universities/colleges were invited to partici-
pate. In most cases, no follow-up action was taken to increase the
response rate.

January 2001 Journal of Engineering Education 77

Table 2. Maturity profile of courses satisfying 75% of require-
ments.

Table 3. 1998 maturity profile of 697 software development
organizations.

Table 5. Key process areas supported by courses.

Table 4. Maturity level supported by courses.

www.manaraa.com
78 Journal of Engineering Education January 2001

V. RESULTS

There were 53 responses to our survey. Only rarely did more than
one instructor respond from the same college; most were the sole
participant from their college. Most of the surveys were submitted
from the United States. The overall results, in terms of the maturity
levels is shown in Table 1. If the percentage threshold was reduced
to 75%, more courses reached level 3, but the status of level 4 and 5
remained the same, as shown in Table 2. In either case, a significant
gap existed between the levels achieved in software engineering
courses and the software industry,8 as shown in Table 3. Specifically,
only approximately 20% of the courses achieved Level-2 or higher,
verses 45% in industry. From these results, it was evident that soft-
ware engineering courses performed at far lower process maturity
levels than their industry counterparts.

Alternatively, Table 4 indicates the degree to which courses sup-
port each level. Collectively, the sample software engineering
courses fell mainly in the Level-1 category. Further, the courses
scored better in Level-3 than Level-2, and again in Level-5 than
Level-4. This “head heavier than body” phenomenon implied ma-
jority of the courses did not have a solid foundation for further
process improvement.

Specifically, as shown in Table 5, several KPAs scored better
than others: Organization Training Program (83.0%), Project In-
terface Coordination (78.6%), and Peer Reviews (71.7%). Some
KPAs, however, had significantly low results: eight out of the 19
KPAs scored below 50%. The lowest scored KPA was Statistical
Process Management (9.4%). We may deduce that particular at-
tention should be given to project planning, tracking, and configu-
ration management. These Level-2 activities seemed to have pre-
vented most Level-1 courses from being promoted to a higher level.

In analyzing the 55 questions individually, a pattern appeared to
emerge. In most cases, the underlying activities or training for
KPAs were in place for most courses. However, automated tools
were usually not available to students for most Level-1 courses.
This may be due to a lack of funding as is common in many col-
leges. In other words, the Level-1 courses appeared ill-equipped in
terms of automated tools compared to their non-Level-1 peers.

Table 6 summarizes the background information for Level-1
and non-Level-1 courses. In general, the non-Level-1 courses were

taught by more experienced instructors to students with higher in-
dustry experience. Also, these students seemed to be more produc-
tive—their course duration was slightly longer, but they were able
to complete projects almost twice as large.

VI. CONCLUSIONS

As suggested by the results, the sample software engineering
courses lagged behind their industry counterparts in terms of the
maturity levels achieved. The survey results indicate that academic
projects suffer from many of the same “schedule pressure” and “not
relevant” issues as industry projects with most instructors and stu-
dents unwilling to invest the time in more mature practices. This is
unfortunate, however, since the academic projects provide the ideal
opportunity for students to learn and appreciate the value of good
development practices. We hope that this survey and its results will
both guide and motivate instructors to improve their development
processes utilized in software engineering courses as they move up
the maturity levels. We have already received e-mail from some re-
spondents that this is indeed happening.

REFERENCES

1. Paulk, M.C., et al., “Capability Maturity Model for Software, Version
1.1,” Software Engineering Institute, CMU/SEI-93-TR-024, February,
1993.

2. Paulk, M.C., et al., “Key Practices of the Capability Maturity Model,
Version 1.1,” Software Engineering Institute, CMU/SEI-93-TR-025,
February, 1993.

3. “SW-CMM V2.0 Draft C,” Software Engineering Institute,
http://www.sei.cmu.edu/cmm/draft-c/c.html, October, 1997.

4. Collofello, J., et al., “Assessing the Software Process Maturity of
Software Engineering Courses,” Proceedings of the Twenty-Fifth SIGCSE
Technical Symposium on Computer Science Education, 1994, pp. 16–20.

5. Zubrow, D., et al., “Maturity Questionnaire,” Software Engineering
Institute, CMU/SEI-94-SR-7, June, 1994.

6. “Software Engineering Education Directory,” Software Engineering
Institute, CMU/SEI-91-TR-9, May, 1991.

7. Beckman, K., “Directory of Industry and University Collaborations
with a Focus on Software Engineering Education and Training, Version 6,”
Software Engineering Institute, CMU/SEI-97-SR-018, November, 1997.

8. “Process Maturity Profile of the Software Community,” Software
Engineering Institute, http://www.sei.cmu.edu/activities/sema/pdf/
1998dec.pdf, December, 1998.

Table 6. Averages for level-1 and non-level-1 courses.

www.manaraa.com

Copyright of Journal of Engineering Education is the property of ASEE and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

